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Abstract

We present a novel approach for generating full-page
Chinese calligraphy using Low-Rank Adaptation (LoRA)
to fine-tune Stable Diffusion, a large-scale latent diffusion
model. Unlike prior work focused on individual charac-
ter synthesis or supervised style transfer, our method en-
ables stylistically coherent, layout-aware image generation
without character-level labels. By applying LoRA to both
attention and convolution layers, we achieve efficient do-
main adaptation using a small dataset of historically di-
verse calligraphy samples. Our experiments show that fine-
tuning enables the model to reproduce brush textures, spa-
tial rhythm, and stylistic traits alignedwith specific calligra-
phers. In addition, we discovered that the model struggles
with semantic accuracy and nuanced script differentiation
due to limited data and CLIP’s short input length. Despite
these constraints, our method demonstrates the potential for
adapting diffusion models to low-resource, culturally signif-
icant visual domains with minimal supervision.

1. Introduction
Diffusion models have emerged as a powerful genera-

tive framework, achieving state-of-the-art results in image
synthesis, inpainting, and conditional generation. Among
these, denoising diffusion probability models (DDPM) by
Ho et al. [3] form the foundational architecture, where im-
age generation is modeled as a gradual denoising process
from Gaussian noise. Stable diffusion introduced by Rom-
bach et al. [13], a latent diffusion model built on DDPM,
has demonstrated both high quality generation and compu-
tational efficiency.

Although these models are powerful, fine-tuning them
for domain-specific image generation tasks remains a chal-
lenge because of their large size and training cost. Low-
Rank Adaptation (LoRA) by Hu et al. [4] inserts trainable
rank decomposition matrices into existing model weights,
allowing new capabilities to be learned with minimal
changes to the original model parameters. This makes
LoRA particularly well-suited for adapting generative mod-

els like Stable Diffusion to niche or underrepresented do-
mains.

Chinese calligraphy is a visually rich art form marked by
expressive brushwork and complex composition. Although
recent studies such as calliffusion by Liao et al. [6] and
Moyun by Liu et al. [8] explore the diffusion-based genera-
tion of individual characters or style transfer, they are based
on character-level control or recognition-based models.

In contrast, our goal is to generate full-page calligra-
phy compositions without explicit supervision, allowing the
model to freely learn both stylistic and structural patterns
from example images. Importantly, our method does not
train a separate model for each calligraphy style. Instead,
we fine-tune a single base model using LoRA with a dataset
containing multiple genres of calligraphy, each associated
with a descriptive prompt (e.g., ”mi fu xingshu calligraphy”
or ”chu suiliang kaishu calligraphy”). During inference, the
desired genre or style is specified as part of the text prompt,
which acts as a control signal to guide generation. This
prompt-conditioned generation enables the model to synthe-
size images in various calligraphic styles using the same un-
derlying model weights. Thus, our method offers a scalable
and flexible framework for modeling diverse artistic styles
without requiring separate fine-tuning for each one.

We show that, with minimal domain-specific supervi-
sion, Stable Diffusion can be guided to generate high-
fidelity, stylistically coherent calligraphy compositions
across different scripts. Our findings contribute to both the
technical development of efficient generative fine-tuning
methods and the cultural enrichment of generative AI ap-
plications.

2. Related Work
2.1. Stable Diffusion

Stable Diffusion [13] is a latent text-to-image generative
model that has become a foundational method for control-
lable image synthesis. It comprises three key components:
(1) a variational autoencoder (VAE) that maps images to
a compressed latent space Z , (2) a UNet-based denoising
model that predicts noise residuals during diffusion steps in
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Z , and (3) a text encoder derived from CLIP [11], which
maps text prompts into conditioning vectors. Generation is
guided by the objective:

Ldiffusion = Eϵ,z0,t

[
∥ϵ− ϵθ(zt, t, τθ(c))∥22

]
, (1)

where ϵ is the added noise, zt is the latent at timestep t,
and c is the conditioning text embedding.

Because Stable Diffusion operates in a lower-
dimensional latent space instead of pixel space, it achieves
higher efficiency and scalability. These properties, along
with its open-source availability, make it well-suited
for lightweight adaptation methods such as Low-Rank
Adaptation (LoRA). Our work builds on Stable Diffusion
to study the generation of full-page Chinese calligraphy
compositions, leveraging prompt-guided fine-tuning to
control genre and style through text prompts.

In the text-to-image setting, conditioning is introduced
through cross-attention, where the noise prediction function
becomes ϵθ(zt, t, τ(c)), with τ(c) denoting a text embed-
ding. Our project builds on this framework by adapting
cross-attention layers using task-specific LoRA.

2.2. Parameter-Efficient Fine-Tuning with LoRA

To efficiently adapt large-scale diffusion models, we
leverage Low-Rank Adaptation (LoRA) [4], which repa-
rameterizes weight updates in a low-rank form:

W ′ = W + αAB, (2)

where A ∈ Rd×r and B ∈ Rr×k are learned matrices with
rank r ≪ min(d, k), and α is a scaling factor. This al-
lows for efficient fine-tuning of specific submodules (e.g.,
attention or convolution layers) while keeping the large base
model frozen.

Recent advances in LoRA extend the original method
in several directions, such as adaptive rank scaling [16],
LoraHub [5], and integration with parameter-efficient
adapters [10]. These works target general-purpose language
or vision-language models like LLMs or CLIP [11].

However, for diffusion-based image generation tasks,
the original LoRA remains a widely used and strong
baseline. Studies such as LoRA-Diffusion [9] and
DreamBooth-Lora [15] demonstrate that even vanilla
LoRA, when properly targeted to specific submodules (like
attention layers in U-Net), can enable fast and high-quality
personalization or style transfer with limited data.

In our work, we adopt this vanilla LoRA framework and
extend its application to not only the linear layers of at-
tention mechanisms but also to selected convolution lay-
ers within the U-Net of Stable Diffusion. We find this
approach sufficient for adapting the model to complex,
high-resolution visual domains such as Chinese calligraphy.

Given the limited availability of training data (around 350
samples), the simplicity and robustness of the original LoRA
make it especially appealing for our setting.

2.3. Diffusion for Chinese Calligraphy

Some prior work has explored the use of diffusionmodels
for Chinese calligraphy, particularly at the character level.
CalliFusion [6] proposes a diffusion-based model that gen-
erates individual Chinese characters in specific calligraphy
styles. Their method relies on glyph-level supervision and
assumes access to structurally aligned character datasets,
making it suitable for applications such as font generation
or calligraphy style transfer. Similarly, MoYun [8] focuses
on style-specific calligraphy generation by learning to trans-
fer style attributes from a reference character image to a
standard printed glyph. These approaches are effective for
producing high-quality stylized characters but are limited in
scope to single-character synthesis and require fine-grained
alignment between visual style and character identity.

In contrast, our method targets full-page calligraphy
composition without explicit character-level supervision.
Rather than generating isolated characters, we aim to syn-
thesize entire compositions that reflect the aesthetic struc-
ture, brush dynamics, and layout characteristic of histori-
cal calligraphy works. Our approach leverages LoRA-based
fine-tuning on top of a pre-trained text-to-image diffusion
model, using weakly paired image-text data where the tex-
tual prompt provides only high-level style cues (e.g., artist
and script type). This setup enables more flexible adapta-
tion across styles and supports open-ended generation tasks
not constrained by glyph-level supervision or paired data.

3. Data
We curated a custom dataset focused on historical and

stylistically diverse Chinese calligraphy, comprising high-
resolution images of complete works with associated style
metadata. This was essential, as no existing public dataset
meets the needs of our task.

Most available datasets contain isolated character im-
ages, useful for recognition or stroke analysis but inadequate
for capturing the full-page composition and stylistic flow of
an artist’s work. Full-page calligraphy in digital form is
rare and often lacks consistent labeling or metadata, mak-
ing it unsuitable for training generative models on coherent,
page-level styles.

We collected 139 full-page samples of Mi Fu’s (米芾)
xingshu and 210 samples of Chu SuiLiang (褚遂良）kaishu
styles from reputable online archives and museums. Each
image was paired with a manually curated .txt file including
the artist’s name, style, and a brief description. This ensured
strong semantic alignment between text and image—crucial
for training text-to-image models like Stable Diffusion.
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To enhance stylistic diversity, we added 63 samples from
Wen Zhengming (文征明) and 24 from Zhao Mengfu (赵
孟頫), both representing distinct traditions. All images were
annotated with .txt metadata for use as conditioning prompts
during training and inference.

We applied standard preprocessing, including resizing
images to 1024×1024 for compatibility with Stable Diffu-
sion. As the pretrained model struggled with Chinese to-
kens, we translated style and author labels into English for
training data and test prompts, enabling generation using the
model’s existing vocabulary.

English prompt Chinese prompt
Mi Fu’s (米芾)行书 139 139
Chu Suiliang’s (褚遂良)楷书 210 210
Zhao Mengfu (赵孟頫)楷书 24 24
Zhengming (文征明)楷书 63 63
Total 348 348

Table 1: Training corpus size overview

4. Methods

4.1. Approach

Our work treats calligraphy generation as a holistic im-
age synthesis task. Full-page calligraphy places emphasis
on the flow, rhythm, spatial composition, and emotional ex-
pressiveness of the artwork, qualities that go beyond indi-
vidual characters. We deliberately avoid recognition con-
straints and allow the model to generate expressive, layout-
aware imagery with stylistic flexibility.

To the best of our knowledge, our work is the first
to explore full-page Chinese calligraphy generation using
LoRA-fine-tuned latent diffusion models without explicit
character-level supervision.

Diffusion Models and Lightweight Fine-Tuning Our
approach leverages Stable Diffusion by Rombach [13],
a latent DDPM model, and applies Low-Rank Adaptation
(LoRA) Hu et al. [4] for efficient fine-tuning. LoRA en-
ables domain adaptation with minimal memory and com-
pute cost by injecting trainable low-rank updates into the
attention layers.

4.2. Baseline Method

The baseline in our study is the original Stable Diffu-
sion model from the Hugging Face library, as introduced by
Rombach et al. [14], without any fine-tuning. This serves
to illustrate the limitations and generic nature of image gen-
eration when no domain-specific adaptation is applied.

Mi Fu
米芾行书

Chu Suiliang
褚遂良楷书

Zhao Mengfu
赵孟頫楷书

Zhengming
文征明楷书

Table 2: Sample training image from each calligrapher’s
style.

4.3. LoRA Injection to Stable Diffusion Model

U-Net Architecture and LoRA Injection The core de-
noising network in Stable Diffusion is a U-Net, which pro-
cesses latent image representations at multiple resolutions
through a sequence of downsampling, bottleneck, and up-
sampling stages. Each stage includes a combination of:

• Residual blocks with 2D convolutional layers

• Self-attention blocks (at selected resolutions)

• Cross-attention blocks (for text conditioning)

This U-Net is the main target for LoRA-based fine-
tuning, as it contains the bulk of the learnable parameters
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responsible for image synthesis.

Attention-Based LoRA Injection We first apply LoRA
to the cross-attention layers, which follow the standard at-
tention mechanism:

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V (3)

with linear projections defined as:

Q = XWQ, K = YWK , V = YWV (4)

LoRA is applied to the query and value projections:

WQ
adapted = WQ +∆WQ = WQ +AQBQ, (5)

WV
adapted = WV +AV BV (6)

This allows the model to adjust its text-to-image align-
ment and spatial attention without modifying the basemodel
weights.

Convolutional LoRA Injection Beyond attention, we
also experiment with LoRA applied to 2D convolutional
layers in the residual blocks. Given a convolutional layer
with weights Wconv ∈ RCout×Cin×k×k, we reshape it into a
matrix and inject a LoRA update:

W ′
conv = Wconv +AconvBconv (7)

where:

Aconv ∈ RCout×r,

Bconv ∈ Rr×(Cin·k2)

The result is reshaped back to the original 4D convolution
weight shape. This enables LoRA to influence low-level vi-
sual features such as brush stroke texture, edge dynamics,
and local contrast—all essential for expressive Chinese cal-
ligraphy.

Configuration Comparison We evaluated several con-
figurations:

• Attention-only LoRA: Injected into query/value of
cross-attention layers

• Conv-only LoRA: Injected into selected convolu-
tional layers

• Combined LoRA: Applied to both

4.4. Inference

At inference time, we generate full-page images using
prompts specifying style or author, e.g., “Chinese calligra-
phy, style: xingshu, artist: Mi Fu”. Importantly, we do not
require character-level supervision or recognition, allowing
the model to generate aesthetically coherent compositions
that emphasize layout, flow, and expressiveness.

4.5. Alternative Considered

Custom LoRA Implementation vs. Existing Libraries
While several libraries such as peft and diffusers of-
fer standard LoRA support for Stable Diffusion, we imple-
mented our own LoRA injection mechanism to allow more
fine-grained control over where and how LoRA is applied.
Existing tools typically focus on patching attention layers
only, with fixed defaults and limited configurability. In
contrast, our custom setup allowed us to explore alternative
strategies, such as injecting LoRA into convolutional layers
in residual blocks, varying rank per module, and controlling
initialization and update behavior precisely. This flexibil-
ity was essential in our setting, where the interplay between
spatial layout (handled by attention) and stroke-level texture
(handled by convolution) directly affects the aesthetic qual-
ity of generated calligraphy. Our approach enabled deeper
experimentation with architectural choices and adaptation
granularity, which would not have been possible with black-
box LoRA toolkits.

5. Experiments
5.1. Hyperparameters and Experimental Setup

We set several key hyperparameters for training our
LoRA-enhanced Stable Diffusion model:

• Batch size: [1, 2, 4, 8]
We process one training sample per iteration due to
memory constraints and the high resolution of images.

• Learning rate: [1× 10−4, 1× 10−5]
This controls the step size during optimization, balanc-
ing convergence speed and stability.

• LoRA rank r: [2, 4, 8, 16, 32]
The rank determines the dimensionality of the low-
rank adaptation matrices. Lower ranks reduce model
complexity and computation, while higher ranks in-
crease capacity.

• LoRA scale α
r : [0.5, 1, 2]

The scaling factor α normalized by the rank r modu-
lates the contribution of LoRAweights during training.

• Dropout: [0, 0.1, 0.2, 0.5]
Dropout rates used to regularize training and prevent
overfitting by randomly dropping units during updates.
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• Epochs: [10, 20, 50, 100, 200]
The number of complete passes over the training
dataset.

• Training steps: Calculated as

training steps = epochs× training data size

This represents the total number of iterations per-
formed during training.

5.2. Variations in LoRA Injection Points

To investigate the effect of LoRA weight injection, we
experimented with applying LoRA adaptations to different
subsets of the model layers:

• Attention layers only: Applying LoRA weights ex-
clusively to self-attention modules.

• All convolution layers + attention layers: Injection
of LoRA weights into every convolution and attention
layer, maximizing fine-tuning capacity.

• Middle convolution layer, up convolution layer,
and attention layers: Targeting the middle and up-
sampling convolution layers along with attention lay-
ers to explore a more focused adaptation.

• Middle convolution layer and attention layers: Ap-
ply LoRA only to the middle convolution block and
attention layers for a balance between specificity and
capacity.

This setup helps us understand how different hyperpa-
rameters and LoRA injection strategies affect model adap-
tation, efficiency, and output quality.

5.3. Training Corpus

To explore how LoRA fine-tuning impacts the alignment
of visual information with text in different languages, we
performed experiments using a consistent set of images that
featured English and Chinese text. We applied LoRA adap-
tations separately to an English text corpus and a Chinese
text corpus, both paired with these same images with the
same agumentation methods.

5.4. Evaluation Metrics

5.4.1 Human feedback

We put substantial emphasis on human feedback to evaluate
generated calligraphy images due to several factors that are
difficult for current computational models to capture:

• Nuanced Style Variation: Discerning the finesse and
authenticity of a specific calligraphy style often re-
quires human expertise.

• Text Readability: Readability can vary significantly
based on the style.

• Aesthetic Appeal: Calligraphy is an art form, and its
evaluation involves subjective aesthetic judgment.

5.4.2 CLIP Evaluation

We utilize the Contrastive Language-Image Pre-training
(CLIP) score introduced by Radford [11] as a quantitative
measure to assess the semantic similarity between the gen-
erated images and their corresponding text prompts.

CLIPScore(x, t) =
⟨fimg(x), ftext(t)⟩

∥fimg(x)∥ · ∥ftext(t)∥
(8)

where fimg(x) and ftext(t) are CLIP image embedding and
CLIP text embedding.

However, even though CLIP provides a useful automated
metric, it has several inherent limitations that can affect its
reliability and sensitivity to fine-grained details, e.g. the
base CLIP text encoder is not natively well-trained on un-
derstanding Chinese prompts. Therefore, though our model
gets a 0.18 - 0.25 clip score between prompts and generated
calligraphy images, we don’t take it as a key factor in eval-
uating model performance.

5.4.3 FID Evaluation

We use the Fréchet Inception Distance (FID) introduced by
Heusel et al. [2] to assess the similarity between the distribu-
tion of the generated images and the real calligraphy work to
quantitatively measure the relevance of generated images.

FID = ∥µr − µg∥22 + Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)

(9)

where µr, µg are the mean feature vectors of real and gener-
ated images and Σr,Σg denote their corresponding covari-
ances.

Note that the reliability of our FID computation is re-
stricted by data scarcity, that the amount of real images in
our data corpus, 139 Mifu’s and 210 Chu Suiliang’s, is far
less than the recommended minimum 10,000 sample size
requirement[2].

5.5. Experiment Results

5.5.1 Experiment Results with Chinese Text Inputs

We conducted extensive experiments with Chinese text
prompts to evaluate performance across LoRA configura-
tions. After testing various hyperparameters, the best results
were achieved using 100 epochs, a learning rate of 1×10−5,
and a dropout rate of 0.1. All results reported use this opti-
mal setup and show significant gains over the baseline, with
variations depending on LoRA rank and alpha.
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LoRA Rank/Alpha Base 4/4 8/8 8/16 16/32
Mi Fu FID 532 194 160 204 218

Chu Suiliang FID 519 372 328 315 387
FIDs Sum 1051 566 488 549 605

Table 3: FID performance comparison across different
LoRA Rank/Alpha configurations and baseline (no fine-
tuning). The best (lowest) total FID is 488 at 8/8.

As shown in Table 3, the baseline model (without fine-
tuning) produced high FID scores: 532 for Mi Fu and 519
for Chu Suiliang—resulting in a combined score of 1051,
indicating a large distribution gap from the target styles.

LoRA fine-tuning improved results across all configu-
rations. The best performance came from rank 8/alpha 8,
achieving a combined FID of 488 (a 53.6% improvement),
with FID scores of 160 for Mi Fu’s xingshu and 328 for
Chu Suiliang’s kaishu.

The results highlight style-specific trends: all configura-
tions improved Mi Fu’s expressive xingshu, with rank 8/al-
pha 8 performing best. In contrast, Chu Suiliang’s struc-
tured kaishu was more resistant to adaptation, even under
optimal settings.

Higher ranks (16/32) did not lead to further gains, sug-
gesting that moderate capacity via LoRA is sufficient. Rank
4/alpha 4 offered a good trade-off between performance and
efficiency, delivering competitive results with lower com-
pute costs.

“褚遂良书法”
(Chu Suiliang
calligraphy)

“米芾书法”
(Mi Fu

calligraphy)

Figure 1: Generated images by best model (rank 8/alpha 8)
using Chinese text prompts

As illustrated in Figure 1, the optimal rank 8/alpha 8
model successfully generates high-quality calligraphy when
prompted with Chinese text. The left image shows the
model’s response to the prompt “褚遂良书法” (Chu Suiliang
calligraphy), demonstrating the structured, precise charac-
teristics typical of kaishu style. The right image, generated
from the prompt “米芾书法” (Mi Fu calligraphy), exhibits
the flowing, expressive brushwork characteristic of xingshu
style. These results showcase the model’s ability to differ-
entiate between distinct calligraphic styles and respond ap-
propriately to Chinese character-based prompts.

The superior performance of Chinese text inputs com-

pared to baseline generation demonstrates the model’s abil-
ity to understand and respond to Chinese character-based
prompts after LoRA adaptation. This is particularly note-
worthy given CLIP’s inherent limitations with non-English
text understanding. The fine-tuning process appears to have
enhanced the model’s cross-lingual text-to-image alignment
capabilities, enabling more authentic calligraphy generation
when prompted with native Chinese descriptions.

These findings highlight the effectiveness of LoRA fine-
tuning for domain-specific artistic generation while main-
taining computational efficiency. The optimal rank 8/alpha
8 configuration strikes an effective balance between adapta-
tion capacity and overfitting prevention, making it our rec-
ommended setting for Chinese calligraphy generation tasks.

5.5.2 Experiment Results with English Text Inputs

As shown in Figure 2, fine-tuning led to substantial im-
provements in generation quality. Prior to fine-tuning, the
model produced abstract or unrecognizable symbols when
prompted with English descriptions. When prompted with
the Chinese translation (e.g., “米芾行书书法”), the model
almost always generated entirely unrelated images, for in-
stance, a rocky landscape with flowers, highlighting its lim-
ited understanding of the target domain.

After fine-tuning, the model was able to generate images
that were stylistically much closer to the reference calligra-
phy. In particular, the outputs for prompts such as “米芾”
and“褚遂良”demonstrated clear visual alignment with the
training samples.

Baseline Fine-tuned Training Image

Figure 3: Mi Fu xingshu calligraphy

As shown in Figure 3, notably, the lower-left region of the
fine-tuned output for“米芾”reflects structural and stylistic
features that are consistent with the sample training image,
indicating successful adaptation to the target style.

Baseline Fine-tuned Training Image

Figure 4: chu suiliang kaishu calligraphy
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Lora Finetuning Image Generation Performance

mi fu xingshu
calligraphy 米芾行书书法

chu suiliang
kaishu

calligraphy
褚遂良楷书书法

deng shiru
lishu

calligraphy
邓石如隶书书法 a cute cat with

long whiskers

baseline
(w/o
fine

tuning)

w/ fine
tuning

training
image Control Control Control

Figure 2: Before/after LoRA fine-tuning with selected training images for targeted calligraphy styles.

As shown in Figure 4, even though stylistic alignment
showed significant improvement compared to the baseline
outputs, limitations remain in character accuracy. For ex-
ample, in the image generated from the prompt“chu suiliang
kaishu,”a substantial portion of the generated calligraphy—
particularly in the 楷书 (regular script) style—does not cor-
respond to real Chinese characters. This suggests that while
LoRA fine-tuning with approximately 348 training samples
effectively enabled the model to learn stylistic features, it
was insufficient for capturing the full complexity and diver-
sity of Chinese character forms. The results highlight the
challenge of simultaneously learning both stylistic and se-
mantic fidelity in high-resolution artistic scripts with limited
data.

Baseline Fine-tuned Training Image

Figure 5: 米芾行书

As shown in Figure 5, it is notable that, prior to fine-
tuning, the model failed to generate meaningful images
when prompted with Chinese character inputs. However,
after training exclusively on English text–image pairs, the
model demonstrated improved performance even on Chi-
nese character-based prompts. This suggests that the learn-

ing acquired through English-based training generalized to
some extent across languages. Such cross-lingual transfer
indicates that the fine-tuning process enhanced shared rep-
resentations within the model’s multilingual text encoder,
despite the absence of explicit alignment between English
and Chinese prompts in the original model.

5.6. LoRA Sensitive to Overfitting

During our experiments, we observed a critical overfit-
ting phenomenon when using a learning rate of 1 × 10−4.
The model exhibited severe overfitting that extended be-
yond the target calligraphy domain, with LoRA-adapted
weights becoming so dominant that they interfered with the
model’s ability to generate images for completely unrelated
prompts.

When tested with generic prompts such as “sunset” or
“cat”, the overfitted model failed to produce coherent im-
ages in these domains. Instead, outputs showed calligraphy-
like artifacts and features reminiscent of the training data,
suggesting that aggressive LoRA updates had corrupted the
model’s general image generation capabilities by overwrit-
ing pretrained knowledge.
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w/o fine tuning epoch 1 epoch 50 epoch 98 real image

米芾-行书

褚遂良-楷书

Figure 6: Gradual script style learning

Prompt: “cat” Prompt: “sunset”

Figure 7: Generated images for unrelated prompts

Reducing the learning rate to 1 × 10−5 effectively miti-
gated this issue. The lower learning rate allowed the model
to maintain its ability to generate high-quality images for
generic prompts while successfully adapting to the calligra-
phy domain. This finding underscores the delicate balance
required in LoRA fine-tuning: adaptations must be strong
enough to learn domain-specific features while remaining
gentle enough to preserve the model’s general capabilities.

5.7. Rapid Calligraphy, Gradual Script Style

Our experiment shows that the model quickly learns ba-
sic calligraphy patterns but struggles with subtle style dif-
ferences. As shown in Figure 6, it generates calligraphy-
like images after just 1 epoch but fails to distinguish be-
tween semi-cursive and regular scripts without extended
training, highlighting the need for more epochs to capture
fine-grained styles.

6. Conclusion

This work demonstrates that LoRA fine-tuning is effec-
tive for adapting large models to the complex domain of
full-page Chinese calligraphy generation. Using only 350
training samples, the model learned to produce compelling,
stylistically diverse images, capturing brush strokes, layout,
and artistic flow. The method supports flexible adaptation
across art forms, enabling creative stylistic blending.

However, the model struggled to associate specific char-
acters with their calligraphic forms, largely due to CLIP’
s 77-token input limit, which restricts detailed text under-
standing. Future work could address this by incorporating
more powerful language encoders like BERT [1] or T5 [12]
to enhance text-image alignment in calligraphy generation.

6.1. Future Work

Addressing Text Input Length Limits A key limitation
is the 77-token cap of CLIP’s text encoder, which restricts
the model’s ability to capture longer calligraphic texts com-
posed of extended phrases or passages. To better model
the character-level semantic correspondence, future work
could integrate alternative text encoders like [1] or T5 [12],
which support longer inputs and richer contextual embed-
dings. This may alleviate token length constraints and en-
hance text-to-calligraphy fidelity.

Multilingual Text Understanding Limitation CLIP’s
training on primarily English text-image pairs limits its mul-
tilingual understanding, reducing effectiveness on Chinese
calligraphy prompts. Future work could incorporate models
with stronger multilingual capabilities—such asmultilingual
BERT [1] or language-specific encoders—to better capture
non-English semantics and improve generation quality.

Controlling LoRA Fine-Tuning Influence Future re-
search could explore advanced fine-tuning methods like dy-
namic LoRA [7], which adaptively adjusts adapter param-
eters during training based on layer importance and input
features. This approach allows for more efficient and task-
specific optimization, potentially enhancing performance
while maintaining computational efficiency.
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